ATLAS ttH measurements in H→γγ at √s= 13 TeV

Jennet Dickinson

USLUA Lightning Round 10/26/2018

Higgs production in pp collisions

- ttH production is a direct probe of the Higgs-top coupling
 - Indirect probes include gluon-gluon fusion production and H →γγ decay loops
- Standard model σ_{ttH} is only 0.51 pb at 13 TeV

Why H→γγ?

- H -----
- Con: low branching ratio = 0.227%
- Pro: manageable background
 - Low rates of photons compared to jets
 - Smoothly falling background m_{yy} spectrum
- Pro: excellent photon energy resolution
- Pro: no ambiguity in the origin of final state particles
 - Photons from Higgs, all other objects from tops
- Pro: expect big gains with more data

Multivariate analysis

Multivariate analysis

- Define ttH categories with different S/B by slicing in BDT score
 - Tight BDT categories have lower statistics in data, but higher ttH purity and better S/B ratio

Sensitivity to $ttH(\rightarrow \gamma\gamma)$

with 79.8 fb⁻¹

 Perform a combined signal + background fit over all categories to the m_{yy} distribution

H → yy alone is sensitive to ttH at the

level of 4.1σ

Statistics limited!
 Expect further improvement with 2018 data

Top content

in $ttH(\rightarrow yy)$ categories

- Using a dedicated BDT algorithm, reconstruct top candidates from sets of three jets
- Clear peak in data at m_{top} in the ttH(→ γγ) categories!
- Fit data to decompose continuum diphoton background into 58% ttyy and 32% yy

Discovery of ttH

 We combine the ttH(→γγ) categories with other Higgs decay channels

- We observe ttH production with a combined significance of 6.3σ
- This is the first observation of direct Higgs-quark coupling!

Discovery of ttH

We measure a 13 TeV ttH cross section of

$$\sigma_{\text{ttH}} = 670 \pm 90 \text{ (stat)} ^{+110}_{-100} \text{ (syst) fb}$$

- Reasonable agreement with the SM prediction
- We look forward to probing this process further in the full Run-2 dataset!

Backup

Abstract

Higgs production in association with top quarks (ttH) is predicted by the Standard Model at a rate of about 1% of the total Higgs cross section. This process directly probes the Higgstop coupling, a critical parameter for isolating Beyond the Standard Model contributions to Higgs physics. The ATLAS search for ttH events in conjunction with the decay H $\rightarrow \gamma \gamma$ takes advantage of the high photon detection efficiency and energy resolution of the ATLAS electro-magnetic calorimeter, as well as the relatively low rate of diphoton background processes. The application of sophisticated multivariate techniques to identify ttH $\rightarrow \gamma\gamma$ events improves the sensitivity to ttH compared to past analyses. In combination with other Higgs decay channels, $ttH \rightarrow \gamma\gamma$ contributed to the recent discovery of the ttH production mode.

References

ATLAS publications

ATLAS ttH discovery (June 2018): https://arxiv.org/pdf/1806.00425.pdf

Other

- http://pdg.lbl.gov/2016/reviews/rpp2016-revhiggs-boson.pdf
- https://twiki.cern.ch/twiki/bin/view/%20LHCPhysic s/LHCHXSWG#SM Higgs
- ATLAS CONF H→γγ (July 2018):
 http://cdsweb.cern.ch/record/2628771

The ATLAS detector

BDT Training

in the hadronic channel

- Require ≥3 jets, ≥1 b-jet, 0 leptons
- Signal: ttH(yy) MC
- Background: data control sample + ggH(γγ) MC
- Training variables:
 - Four momentum and b-tag score of up to six jets
 - Four momentum of the two photons, scaled by $m_{\gamma\gamma}$ to prevent biasing the $m_{\gamma\gamma}$ distribution
 - Missing E_T and angle of missing E_T

Category Definition

in the hadronic channel

- Define four hadronic ttH categories with different S/B by slicing in BDT score
 - Reject events with BDT score < 0.91
- Tight BDT categories have lower statistics, but higher ttH purity and better S/B ratio
 - These are the most powerful categories

BDT category 4 (loosest)

Expected ttH yield: 3.00

S/B: 0.05

ttH purity (n_{ttH}/n_{Higgs}): 48%

Background shape: Power law

Mass resolution:

1.63 GeV

BDT category 3

Expected ttH yield:

4.7

S/B: 0.13

ttH purity (n_{ttH}/n_{Higgs}): 70%

Background shape: Power law

Mass resolution: 1.59 GeV

BDT category 2

Expected ttH yield: 3.41

S/B: 0.42

ttH purity (n_{ttH}/n_{Higgs}): 83%

Background shape: Exponential

Mass resolution: 1.46 GeV

BDT category 1 (tightest)

Expected ttH yield:

4.20

S/B: 1.87

ttH purity (n_{ttH}/n_{Higgs}): 90%

Background shape: Power law

Mass resolution:

1.32 GeV

BDT Training

in the leptonic channel

- Require ≥3 jets, ≥1 b-jet, 0 leptons
- Signal: ttH(yy) MC
- Background: data control sample
- Training variables:
 - Four momentum and b-tag score of up to six jets
 - Four momentum of the two photons, scaled by $m_{\gamma\gamma}$ to prevent biasing the $m_{\gamma\gamma}$ distribution
 - Four momentum of up to two leptons
 - Missing E_T and angle of missing E_T

Category Definition

in the leptonic channel

- Define three leptonic ttH categories with different S/B by slicing in BDT score
 - Reject events with BDT score < 0.70
- Again, tightest BDT category is the most powerful due to high S/B
- Statistics in the leptonic channel are lower
 - Branching ratio of W to ev or μv is only 21.3%

Leptonic channel

BDT category 3 (loosest)

Expected ttH yield: 0.82

S/B: 0.17

ttH purity (n_{ttH}/n_{Higgs}) : 73%

Background shape: Exponential

Mass resolution: 1.73 GeV

Leptonic channel

BDT category 2

Expected ttH yield:

2.23

S/B: 0.46

ttH purity (n_{ttH}/n_{Higgs}): 89%

Background shape: Power law

Mass resolution: 1.68 GeV

Leptonic channel

BDT category 1 (tightest)

Expected ttH yield:

4.50

S/B: 1.84

ttH purity (n_{ttH}/n_{Higgs}): 95%

Background shape: Power law

Mass resolution: 1.45 GeV

Systematics

on the combined cross section measurement

Uncertainty source	$\Delta \sigma_{t\bar{t}H}/\sigma_{t\bar{t}H}$ [%]
Theory uncertainties (modelling)	11.9
$t\bar{t}$ + heavy flavour	9.9
$t ar{t} H$	6.0
Non- $t\bar{t}H$ Higgs boson production modes	1.5
Other background processes	2.2
Experimental uncertainties	9.3
Fake leptons	5.2
$ m Jets, \ \it E_{ m T}^{miss}$	4.9
Electrons, photons	3.2
Luminosity	3.0
au-lepton	2.5
Flavour tagging	1.8
MC statistical uncertainties	4.4